Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107259, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582453

RESUMO

Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI. Herein, we developed a mouse model of nervous system-restricted SELENOI deficiency that circumvents embryonic lethality caused by constitutive deletion and recapitulates phenotypic features of hereditary spastic paraplegia. Resulting mice exhibited pronounced alterations in brain lipid composition, which coincided with motor deficits and neuropathology including hypomyelination, elevated reactive gliosis, and microcephaly. Further studies revealed increased lipid peroxidation in oligodendrocyte lineage cells and disrupted oligodendrocyte maturation both in vivo and in vitro. Altogether, these findings detail a critical role for SELENOI-derived plasmenyl-PE in myelination that is of paramount importance for neurodevelopment.

2.
J Invest Dermatol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367909

RESUMO

Physiological calcification of soft tissues is a common occurrence in aging and various acquired and inherited disorders. ABCC6 sequence variations cause the calcification phenotype of pseudoxanthoma elasticum (PXE) as well as some cases of generalized arterial calcification of infancy, which is otherwise caused by defective ENPP1. ABCC6 is primarily expressed in the liver, which has given the impression that the liver is central to the pathophysiology of PXE/generalized arterial calcification of infancy. The emergence of inflammation as a contributor to the calcification in PXE suggested that peripheral tissues play a larger role than expected. In this study, we investigated whether bone marrow-derived ABCC6 contributes to the calcification in PXE. In Abcc6‒/‒ mice, we observed prevalent mineralization in several lymph nodes and surrounding connective tissues and an extensive network of lymphatic vessels within vibrissae, a calcified tissue in Abcc6‒/‒ mice. Furthermore, we found evidence of lymphangiogenesis in patients with PXE and mouse skin, suggesting an inflammatory process. Finally, restoring wild-type bone marrow in Abcc6‒/‒ mice produced a significant reduction of calcification, suggesting that the liver alone is not sufficient to fully inhibit mineralization. With evidence that ABCC6 is expressed in lymphocytes, we suggest that the adaptative immune system and inflammation largely contribute to the calcification in PXE/generalized arterial calcification of infancy.

3.
J Leukoc Biol ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289835

RESUMO

The mechanisms driving metabolic reprogramming during B cell activation are unclear, particularly roles for enzymatic pathways involved in lipid remodeling. We found that murine B cell activation with lipopolysaccharide (LPS) led to a 1.6-fold increase in total lipids that included higher levels of phosphatidylethanolamine (PE) and plasmenyl PE. Selenoprotein I (SELENOI) is an[62] ethanolamine phospholipid transferase involved in the synthesis of both PE and plasmenyl PE, and SELENOI expression was also upregulated during activation. Selenoi knockout (KO) B cells exhibited decreased levels of plasmenyl PE, which plays an important antioxidant role. Lipid peroxidation was measured and found to increase ∼2-fold in KO versus WT B cells. Cell death was not impacted by KO in LPS-treated B cells and proliferation was only slightly reduced, but differentiation into CD138 + Blimp-1+ plasma B cells was decreased ∼2-fold. This led to examination of B cell receptors important for differentiation that recognize the ligand B cell activating factor (BAFF), and levels of the transmembrane activator and calcium-modulator and cytophilin ligand interactor (TACI; CD267) were significantly decreased on KO B cells compared to WT controls. Vaccination with ovalbumin (OVA)/adjuvant led to decreased OVA-specific IgM levels in sera of KO mice compared to WT mice. Real-time PCR analyses revealed a decreased switch from surface to secreted IgM in spleens of KO mice induced by vaccination or LP-BM5 retrovirus infection. Overall, these findings detail the lipidomic response of B cells to LPS activation and reveal the importance of upregulated SELENOI for promoting differentiation into IgM secreting plasma B cells.

4.
Antioxidants (Basel) ; 12(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001759

RESUMO

Selenocysteine (Sec), the 21st amino acid, is structurally similar to cysteine but with a sulfur to selenium replacement. This single change retains many of the chemical properties of cysteine but often with enhanced catalytic and redox activity. Incorporation of Sec into proteins is unique, requiring additional translation factors and multiple steps to insert Sec at stop (UGA) codons. These Sec-containing proteins (selenoproteins) are found in all three domains of life where they often are involved in cellular homeostasis (e.g., reducing reactive oxygen species). The essential role of selenoproteins in humans requires us to maintain appropriate levels of selenium, the precursor for Sec, in our diet. Too much selenium is also problematic due to its toxic effects. Deciphering the role of Sec in selenoproteins is challenging for many reasons, one of which is due to their complicated biosynthesis pathway. However, clever strategies are surfacing to overcome this and facilitate production of selenoproteins. Here, we focus on one of the 25 human selenoproteins, selenoprotein M (SELENOM), which has wide-spread expression throughout our tissues. Its thioredoxin motif suggests oxidoreductase function; however, its mechanism and functional role(s) are still being uncovered. Furthermore, the connection of both high and low expression levels of SELENOM to separate diseases emphasizes the medical application for studying the role of Sec in this protein. In this review, we aim to decipher the role of SELENOM through detailing and connecting current evidence. With multiple proposed functions in diverse tissues, continued research is still necessary to fully unveil the role of SELENOM.

5.
Front Mol Biosci ; 10: 1096261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762212

RESUMO

Post-translational modifications (PTMs) can occur on almost all amino acids in eukaryotes as a key mechanism for regulating protein function. The ability to study the role of these modifications in various biological processes requires techniques to modify proteins site-specifically. One strategy for this is genetic code expansion (GCE) in bacteria. The low frequency of post-translational modifications in bacteria makes it a preferred host to study whether the presence of a post-translational modification influences a protein's function. Genetic code expansion employs orthogonal translation systems engineered to incorporate a modified amino acid at a designated protein position. Selenoproteins, proteins containing selenocysteine, are also known to be post-translationally modified. Selenoproteins have essential roles in oxidative stress, immune response, cell maintenance, and skeletal muscle regeneration. Their complicated biosynthesis mechanism has been a hurdle in our understanding of selenoprotein functions. As technologies for selenocysteine insertion have recently improved, we wanted to create a genetic system that would allow the study of post-translational modifications in selenoproteins. By combining genetic code expansion techniques and selenocysteine insertion technologies, we were able to recode stop codons for insertion of N ε-acetyl-l-lysine and selenocysteine, respectively, into multiple proteins. The specificity of these amino acids for their assigned position and the simplicity of reverting the modified amino acid via mutagenesis of the codon sequence demonstrates the capacity of this method to study selenoproteins and the role of their post-translational modifications. Moreover, the evidence that Sec insertion technology can be combined with genetic code expansion tools further expands the chemical biology applications.

7.
J Leukoc Biol ; 112(6): 1387-1397, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916034

RESUMO

Selenoprotein I (SELENOI) is an ethanolamine phospholipid transferase contributing to cellular metabolism and the synthesis of glycosylphosphatidylinositol (GPI) anchors. SELENOI knockout (KO) in T cells has been shown to impair metabolic reprogramming during T cell activation and reduce GPI-anchored Thy-1 levels, which are both crucial for Th17 differentiation. This suggests SELENOI may be important for Th17 differentiation, and we found that SELENOI was indeed up-regulated early during the activation of naïve CD4+ T cells in Th17 conditions. SELENOI KO reduced RORγt mRNA levels by decreasing SOX5 and STAT3 binding to promoter and enhancer regions in the RORC gene encoding this master regulator of Th17 cell differentiation. Differentiation of naïve CD4+ T cells into inflammatory versus tolerogenic Th cell subsets was analyzed and results showed that SELENOI deficiency skewed differentiation away from pathogenic Th17 cells (RORγt+ and IL-17A+ ) while promoting tolerogenic phenotypes (Foxp3+ and IL-10+ ). Wild-type and T cell-specific SELENOI KO mice were subjected to experimental autoimmune encephalitis (EAE), with KO mice exhibiting diminished clinical symptoms, reduced CNS pathology and decreased T cell infiltration. Flow cytometry showed that SELENOI T cell KO mice exhibited lower CD4+ RORγt+ and CD4+ IL-17A+ T cells and higher CD4+ CD25+ FoxP3+ T cells in CNS tissues of mice subjected to EAE. Thus, the metabolic enzyme SELENOI is up-regulated to promote RORγt transcription that drives Th17 differentiation, and SELENOI deficiency shifts differentiation toward tolerogenic phenotypes while protecting against pathogenic Th17 responses.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Células Th17 , Camundongos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Interleucina-17/metabolismo , Diferenciação Celular , Camundongos Knockout , Fatores de Transcrição Forkhead/metabolismo , Fenótipo , Selenoproteínas/metabolismo , Camundongos Endogâmicos C57BL
8.
Arch Biochem Biophys ; 729: 109376, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36007576

RESUMO

Selenoprotein I (selenoi) is a unique selenocysteine (Sec)-containing protein widely expressed throughout the body. Selenoi belongs to two different protein families: the selenoproteins that are characterized by a redox reactive Sec residue and the lipid phosphotransferases that contain the highly conserved cytidine diphosphate (CDP)-alcohol phosphotransferase motif. Selenoi catalyzes the third reaction of the CDP-ethanolamine branch of the Kennedy pathway within the endoplasmic reticulum membrane. This is not a redox reaction and does not directly involve the Sec residue, making selenoi quite distinct among selenoproteins. Selenoi is also unique among lipid phosphotransferases as the only family member containing a Sec residue near its C-terminus that serves an unknown function. The reaction catalyzed by selenoi involves the transfer of the ethanolamine phosphate group from CDP-ethanolamine to one of two lipid donors, 1,2-diacylglycerol (DAG) or 1-alkyl-2-acylglycerol (AAG), to produce PE or plasmanyl PE, respectively. Plasmanyl PE is subsequently converted to plasmenyl PE by plasmanylethanolamine desaturase. Both PE and plasmenyl PE are critical phospholipids in the central nervous system (CNS), as demonstrated through clinical studies involving SELENOI mutations as well as studies in cell lines and mice. Deletion of SELENOI in mice is embryonic lethal, while loss-of-function mutations in the human SELENOI gene have been found in rare cases leading to a form of hereditary spastic paraplegia (HSP). HSP is an upper motor disease characterized by spasticity of the lower limbs, which is often manifested with other symptoms such as impaired vision/hearing, ataxia, cognitive/intellectual impairment, and seizures. This article will summarize the current understanding of selenoi as a metabolic enzyme and discuss its role in the CNS physiology and pathophysiology.


Assuntos
Fosfolipídeos , Selenocisteína , Animais , Sistema Nervoso Central/metabolismo , Cistina Difosfato/análogos & derivados , Cistina Difosfato/metabolismo , Etanolaminas/metabolismo , Humanos , Camundongos , Fosfolipídeos/metabolismo , Fosfotransferases , Selenoproteínas/metabolismo
9.
Redox Biol ; 52: 102321, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500533

RESUMO

Arsenic (As) contamination in drinking water is a global public health problem. Epidemiological studies have shown that selenium (Se) deficiency is associated with an increasing risk of arsenism. However, the association between Se status and As retention in erythrocytes and mechanisms underlying this association have not been fully investigated. In the present study, a total of 165 eligible subjects were recruited and As was found to accumulate in blood mainly by retention in erythrocytes. Retention of As in erythrocytes was negatively correlated with Se status, antioxidant parameters related to Se and As methylation capacity, but positively correlated with the protein-binding capacity of As. Additionally, erythrocytes isolated from subjects with low Se status exhibited cellular damage along with lower protein levels of CD47, which could be aggravated by hydrogen peroxide treatment. Consistent with the human study, the erythrocytes from mice with sub-chronic As exposure exhibited similar cellular damage and shown to be phagocytosed by splenic macrophages, and these effects were mitigated by dietary Se supplementation. Furthermore, hydrogen peroxide treatment induced excessive phagocytosis of erythrocytes with As exposure by splenic macrophages, while co-treating erythrocytes with the reducing agent, N-Acetyl-l-cysteine, mitigated this excessive erythrophagocytosis. Hyperactivation of the NFκB pathway was also detected in splenic macrophages after excessive erythrophagocytosis. In conclusion, this study found that low Se status involving impaired redox homeostasis increased As retention in erythrocytes, which were subsequently phagocytosed by splenic macrophages and led to an increased inflammatory status of splenic macrophages. These findings provide insight into physiological features of arsenism related to Se status and redox homeostasis.


Assuntos
Arsênio , Selênio , Animais , Arsênio/metabolismo , Arsênio/toxicidade , Eritrócitos/metabolismo , Homeostase , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Oxirredução , Selênio/metabolismo , Selênio/farmacologia
10.
J Biol Chem ; 298(3): 101634, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085550

RESUMO

While miRs have been extensively studied in the context of malignancy and tumor progression, their functions in regulating T-cell activation are less clear. In initial studies, we found reduced levels of miR-15a/16 at 3 to 18 h post-T-cell receptor (TCR) stimulation, suggesting a role for decreased levels of this miR pair in shaping T-cell activation. To further explore this, we developed an inducible miR15a/16 transgenic mouse model to determine how elevating miR-15a/16 levels during early stages of activation would affect T-cell proliferation and to identify TCR signaling pathways regulated by this miR pair. Doxycycline (DOX)-induced expression of miR-15a/16 from 0 to 18 h post-TCR stimulation decreased ex vivo T-cell proliferation as well as in vivo antigen-specific T-cell proliferation. We also combined bioinformatics and proteomics approaches to identify the mitogen-activated protein kinase kinase 1 (MEK1) (Map2k1) as a target of miR-15a/16. MEK1 targeting by miR-15a/16 was confirmed using miR mimics that decreased Map2k1 mRNA containing the 3'-UTR target nucleotide sequence (UGCUGCUA) but did not decrease Map2k1 containing a mutated control sequence (AAAAAAAA). Phosphorylation of downstream signaling molecules, extracellular signal-regulated protein kinase 1/2 (ERK1/2) and Elk1, was also decreased by DOX-induced miR-15a/16 expression. In addition to MEK1, ERK1 was subsequently found to be targeted by miR-15a/16, with DOX-induced miR-15a/16 reducing total ERK1 levels in T cells. These findings show that TCR stimulation reduces miR-15a/16 levels at early stages of T-cell activation to facilitate increased MEK1 and ERK1, which promotes the sustained MEK1-ERK1/2-Elk1 signaling required for optimal proliferation.


Assuntos
Sistema de Sinalização das MAP Quinases , MicroRNAs , Linfócitos T , Regiões 3' não Traduzidas , Animais , Ativação Linfocitária , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/imunologia , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , MicroRNAs/genética , MicroRNAs/imunologia , MicroRNAs/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas Elk-1 do Domínio ets/imunologia , Proteínas Elk-1 do Domínio ets/metabolismo
11.
Redox Biol ; 47: 102154, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601426

RESUMO

Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident protein, is regulated by dietary selenium and expressed at a relatively high level in neurons. SELENOK has been shown to participate in oxidation resistance, calcium (Ca2+) flux regulation, and the ER-associated degradation (ERAD) pathway in immune cells. However, its role in neurons has not been elucidated. Here, we demonstrated that SELENOK gene knockout markedly enhanced ER stress (ERS) and increased apoptosis in neurons. SELENOK gene knockout elicited intracellular Ca2+ flux and activated the m-calpain/caspase-12 cascade, thus inducing neuronal apoptosis both in vivo and in vitro. In addition, SELENOK knockout significantly reduced cognitive ability and increased anxiety in 7-month-old mice. Our findings reveal an unexpected role of SELENOK in regulating ERS-induced neuronal apoptosis.


Assuntos
Calpaína , Estresse do Retículo Endoplasmático , Selenoproteínas , Animais , Apoptose , Calpaína/genética , Retículo Endoplasmático , Camundongos , Selenoproteínas/deficiência , Selenoproteínas/genética
12.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681834

RESUMO

The selenoprotein family includes 25 members, many of which are antioxidant or redox regulating enzymes. A unique member of this family is Selenoprotein I (SELENOI), which does not catalyze redox reactions, but instead is an ethanolamine phosphotransferase (Ept). In fact, the characteristic selenocysteine residue that defines selenoproteins lies far outside of the catalytic domain of SELENOI. Furthermore, data using recombinant SELENOI lacking the selenocysteine residue have suggested that the selenocysteine amino acid is not directly involved in the Ept reaction. SELENOI is involved in two different pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, which are constituents of cellular membranes. Ethanolamine phospholipid synthesis has emerged as an important process for metabolic reprogramming that occurs in pluripotent stem cells and proliferating tumor cells, and this review discusses roles for upregulation of SELENOI during T cell activation, proliferation, and differentiation. SELENOI deficiency lowers but does not completely diminish de novo synthesis of PE and plasmenyl PE during T cell activation. Interestingly, metabolic reprogramming in activated SELENOI deficient T cells is impaired and this reduces proliferative capacity while favoring tolerogenic to pathogenic phenotypes that arise from differentiation. The implications of these findings are discussed related to vaccine responses, autoimmunity, and cell-based therapeutic approaches.


Assuntos
Etanolamina/metabolismo , Etanolaminofosfotransferase/fisiologia , Ativação Linfocitária , Fosfolipídeos/metabolismo , Selenoproteínas/fisiologia , Linfócitos T/fisiologia , Reprogramação Celular , Humanos , Fosfatidiletanolaminas/metabolismo , Selênio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/química , Regulação para Cima
13.
Mol Metab ; 47: 101170, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484950

RESUMO

OBJECTIVE: T cell activation triggers metabolic reprogramming to meet increased demands for energy and metabolites required for cellular proliferation. Ethanolamine phospholipid synthesis has emerged as a regulator of metabolic shifts in stem cells and cancer cells, which led us to investigate its potential role during T cell activation. METHODS: As selenoprotein I (SELENOI) is an enzyme participating in two metabolic pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, we generated SELENOI-deficient mouse models to determine loss-of-function effects on metabolic reprogramming during T cell activation. Ex vivo and in vivo assays were carried out along with metabolomic, transcriptomic, and protein analyses to determine the role of SELENOI and the ethanolamine phospholipids synthesized by this enzyme in cell signaling and metabolic pathways that promote T cell activation and proliferation. RESULTS: SELENOI knockout (KO) in mouse T cells led to reduced de novo synthesis of PE and plasmenyl PE during activation and impaired proliferation. SELENOI KO did not affect T cell receptor signaling, but reduced activation of the metabolic sensor AMPK. AMPK was inhibited by high [ATP], consistent with results showing SELENOI KO causing ATP accumulation, along with disrupted metabolic pathways and reduced glycosylphosphatidylinositol (GPI) anchor synthesis/attachment CONCLUSIONS: T cell activation upregulates SELENOI-dependent PE and plasmenyl PE synthesis as a key component of metabolic reprogramming and proliferation.


Assuntos
Etanolamina/metabolismo , Fosfolipídeos/biossíntese , Selenoproteínas/metabolismo , Linfócitos T/metabolismo , Animais , Proliferação de Células , Etanolaminas/metabolismo , Feminino , Glicólise , Glicosilfosfatidilinositóis/metabolismo , Lipogênese/genética , Lipogênese/fisiologia , Masculino , Redes e Vias Metabólicas , Metabolômica , Camundongos , Camundongos Knockout , Fosfatidiletanolaminas/metabolismo , Selenoproteínas/deficiência , Selenoproteínas/genética
15.
Antioxid Redox Signal ; 35(11): 863-884, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32475153

RESUMO

Aims: Strong evidence has implicated synaptic failure as a direct contributor to cognitive decline in Alzheimer's disease (AD), and selenium (Se) supplementation has demonstrated potential for AD treatment. However, the exact roles of Se and related selenoproteins in mitigating synaptic deficits remain unclear. Results: Our data show that selenomethionine (Se-Met), as the major organic form of Se in vivo, structurally restored synapses, dendrites, and spines, leading to improved synaptic plasticity and cognitive function in triple transgenic AD (3 × Tg-AD) mice. Furthermore, we found that Se-Met ameliorated synaptic deficits by inhibiting extrasynaptic N-methyl-d-aspartate acid receptors (NMDARs) and stimulating synaptic NMDARs, thereby modulating calcium ion (Ca2+) influx. We observed that a decrease in selenoprotein K (SELENOK) levels was closely related to AD, and a similar disequilibrium was found between synaptic and extrasynaptic NMDARs in SELENOK knockout mice and AD mice. Se-Met treatment upregulated SELENOK levels and restored the balance between synaptic and extrasynaptic NMDAR expression in AD mice. Innovation: These findings establish a key signaling pathway linking SELENOK and NMDARs with synaptic plasticity regulated by Se-Met, and thereby provide insight into mechanisms by which Se compounds mediate synaptic deficits in AD. Conclusion: Our study demonstrates that Se-Met restores synaptic deficits through modulating Ca2+ influx mediated by synaptic and extrasynaptic NMDARs in 3 × Tg-AD mice, and suggests a potentially functional interaction between SELENOK and NMDARs. Antioxid. Redox Signal. 35, 863-884.


Assuntos
Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Receptores de N-Metil-D-Aspartato/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Transgênicos
16.
Semin Cell Dev Biol ; 115: 54-61, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33214077

RESUMO

Selenium (Se) is an essential micronutrient that plays a key role in regulating the immune system. T cells are of particular interest due to their important role in promoting adaptive immunity against pathogens and cancer as well as regulating tolerance, all of which are influenced by dietary Se levels. The biological effects of Se are mainly exerted through the actions of the proteins into which it is inserted, i.e. selenoproteins. Thus, the roles that selenoproteins play in regulating T cell biology and molecular mechanisms involved have emerged as important areas of research for understanding how selenium affects immunity. Members of this diverse family of proteins exhibit a wide variety of functions within T cells that include regulating calcium flux induced by T cell receptor (TCR) engagement, shaping the redox tone of T cells before, during, and after activation, and linking TCR-induced activation to metabolic reprogramming required for T cell proliferation and differentiation. This review summarizes recent insights into the roles that selenoproteins play in these processes and their implications in understanding how Se may influence immunity.


Assuntos
Metabolismo/imunologia , Selênio/metabolismo , Selenoproteínas/metabolismo , Linfócitos T/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Camundongos
17.
Arch Biochem Biophys ; 689: 108444, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32502470

RESUMO

Selenoprotein I (SELENOI) is an ethanolamine phosphotransferase that catalyzes the third reaction of the Kennedy pathway for the synthesis of phosphatidylethanolamine. Since the role of SELENOI in murine embryogenesis has not been investigated, SELENOI-/+ mating pairs were used to generate global KO offspring. Of 323 weanling pups, no homozygous KO genotypes were found. E6.5-E18.5 embryos (165 total) were genotyped, and only two E18.5 KO embryos were detected with no discernable anatomical defects. To screen embryos prior to uterine implantation that occurs ~ E6, blastocyst embryos (E3.5-E4.4) were flushed from uteruses of pregnant females and analyzed for morphology and genotype. KO embryos were detected in 5 of 6 pregnant females, and 7 of the 32 genotyped embryos were found to be SELENOI KO that exhibited no overt pathological features. Overall, these results demonstrate that, except for rare cases (2/490 = 0.4%), global SELENOI deletion leads to early embryonic lethality.


Assuntos
Blastocisto/patologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/embriologia , Animais , Animais Recém-Nascidos , Blastocisto/ultraestrutura , Implantação do Embrião , Perda do Embrião/genética , Perda do Embrião/patologia , Desenvolvimento Embrionário , Etanolaminofosfotransferase , Feminino , Deleção de Genes , Homozigoto , Masculino , Camundongos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
18.
Sci Rep ; 10(1): 5673, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32214221

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Oncoimmunology ; 8(8): 1601482, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413910

RESUMO

Galectin-9 has emerged as a promising biological target for cancer immunotherapy due to its role as a regulator of macrophage and T-cell differentiation. In addition, its expression in tumor cells modulates tumor cell adhesion, metastasis, and apoptosis. Malignant mesothelioma (MM) is an aggressive neoplasm of the mesothelial cells lining the pleural and peritoneal cavities, and in this study, we found that both human MM tissues and mouse MM cells express high levels of galectin-9. Using a novel monoclonal antibody (mAb) (Clone P4D2) that binds the C-terminal carbohydrate recognition domain (CRD) of galectin-9, we demonstrate unique agonistic properties resulting in MM cell apoptosis. Furthermore, the P4D2 mAb reduced tumor-associated macrophages differentiation toward a protumor phenotype. Importantly, these effects exerted by the P4D2 mAb were observed in both human and mouse in vitro experiments and not observed with another antigalectin-9 specific mAb (clone P1D9) that engages the N-terminus CRD of galectin-9. In syngeneic murine models of MM, P4D2 mAb treatment inhibited tumor growth and improved survival, with tumors from P4D2-treated mice exhibited reduced infiltration of tumor-associated M2 macrophages. This was consistent with an increased production of inducible nitric oxide synthase, which is a major enzyme-regulating macrophage inflammatory response to cancer. These data suggest that using an antigalectin 9 mAb with agonistic properties similar to those exerted by galectin-9 may provide a novel multitargeted strategy for the treatment of mesothelioma and possibly other galectin-9 expressing tumors.

20.
Front Oncol ; 9: 720, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428586

RESUMO

Malignant Mesothelioma (MM) is a rare and highly aggressive cancer that develops from mesothelial cells lining the pleura and other internal cavities, and is often associated with asbestos exposure. To date, no effective treatments have been made available for this pathology. Herein, we propose a novel immunotherapeutic approach based on a unique vaccine targeting a series of antigens that we found expressed in different MM tumors, but largely undetectable in normal tissues. This vaccine, that we term p-Tvax, is comprised of a series of immunogenic peptides presented by both MHC-I and -II to generate robust immune responses. The peptides were designed using in silico algorithms that discriminate between highly immunogenic T cell epitopes and other harmful epitopes, such as suppressive regulatory T cell epitopes and autoimmune epitopes. Vaccination of mice with p-Tvax led to antigen-specific immune responses that involved both CD8+ and CD4+ T cells, which exhibited cytolytic activity against MM cells in vitro. In mice carrying MM tumors, p-Tvax increased tumor infiltration of CD4+ T cells. Moreover, combining p-Tvax with an OX40 agonist led to decreased tumor growth and increased survival. Mice treated with this combination immunotherapy displayed higher numbers of tumor-infiltrating CD8+ and CD4+ T cells and reduced T regulatory cells in tumors. Collectively, these data suggest that the combination of p-Tvax with an OX40 agonist could be an effective strategy for MM treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...